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1. INTRODUCTION 

Long integrations of the atmospheric equations for climate simulation or medium 
range forecasts normally use finite-difference schemes which conserve quantities like 
energy or potential enstrophy. Conservative finite-difference schemes were proposed 
by Arakawa [ 11, Janjic [2], Sadourny [3], Arakawa [4], as well as in Arakawa 
and Suarez [S]. 

Apart from “a priori” methods to conserve integral invariants, “a posterior? 
methods have been used to make schemes conserving. Such methods use non- 
conserving finite-difference or finite-element schemes and restore the integral 
invariants by a variational approach. Such schemes were proposed by Sasaki [6], 
Sasaki et al. [7]. Navon [S, 91 investigated a number of “a posterior? schemes and 
Kalnay-Rivas et al. [lo] obtained results on the effect of enstrophy conservation by 
an “a posterior?’ method in a general circulation model. Navon [ 1 l] enforced 
conservation of integral invariants with a finite-element model of the shallow-water 
equations. 

Conservative schemes will help to prevent the non-linear instability first observed 
by Phillips [12]. This instability can be avoided with most schemes by introducing 
a spatial smoothing operator according to Shapiro [ 133. Conservative schemes will 
have less artificial energy loss due to such filtering. 

In recent years, an increasing number of integrations of atmospheric models have 
been carried out using Galerkin schemes. The Galerkin method most widely used 
is the spectral method of Machenhauer [14] and Orszag [15]. Bourke [16, 171 
gives an example of a three-dimensional atmospheric model using the spectral 
method. The spectral method does not formally conserve energy for all dynamic 
equations where energy is a cubic quantity in the basic variables-like the divergent 
shallow-water equations or three-dimensional models in CJ coordinates. Its 
suitability for climate integrations, which is generally accepted, is based on two 
arguments: 

(1) The spectral method conserves energy for non-divergent flow fields. 

(2) Because of its high accuracy, the spectral method will also approximate 
the conservation laws with good accuracy. 

The relevance of energy conservation for spectral discretization has been dis- 
cussed in Weigle [Sl 1. The vertical discretizations used with spectral methods for 
climate or medium range forecast models are normally energy conserving. 

Simmons et al. [20] gives an example of an energy conserving finite-difference 
method. The finite-element vertical discretization proposed by Steppeler [21, 221 is 
energy conserving. Non-conserving finite-element schemes for short range fore- 
casting were developed by Staniforth [23] and Beland et al. [24]. In a comparison 
of an energy conserving finite-element scheme by Steppeler [25] for the vertical 
discretization with a non-conserving scheme [25], substantial deviations from 
conservation for the latter scheme were found. These models used finite-element 



FINITE-ELEMENT SCHEMES 97 

versions of the model described in [20] using semi-implicit time integration with a 
time step At = 22.5 min. 

For horizontal discretization, finite-element schemes are a possible alternative to 
the spectral method. Meteorological applications of this method have been 
reviewed by Navon [26] and Staniforth [27]. According to Cullen [28] and 
Gresho et al. [29], they are much more accurate than second order finite-difference 
schemes, and are simpler and computationally cheaper than the spectral method, 
particularly for high resolution models. 

This method has been used successfully for short-range forecast models by Cullen 
[30], Navon [31], and Staniforth et al. [32, 331. Its usefulness for general circula- 
tion and medium-range forecast models remains to be seen. Application of finite- 
elements to mesoscale models have been given by Manton [34], McPherson et al. 
[35], and Mailhot et al. [36]. Carson et al. [37] evaluated the performance of a 
finite-element model for short-range forecasting. 

For long-term integrations, the conservation of the integral constraints when 
using discretization schemes has a pivotal importance. In fact, it was shown by 
Jespersen [ 391 that the Arakawa schemes [ 1 ] can be closely related to a particular 
form of finite-element schemes. For the finite-element method, Fix [38] showed 
that energy is conserved for the non-divergent shallow-water equations. 

Conserving finite-element schemes for the two-dimensional simulation of inviscid 
flow Boussinesq equations were discussed by Cliffe [40] and Lee et al. [41, 421. It 
became clear that standard finite-element schemes will conserve energy only for the 
cases when energy is a second-order moment in the fields. 

In cases when energy is a third order moment, i.e., for variable density, special 
precautions have to be taken in order to achieve energy conservation. An energy- 
conserving finite-element scheme for the divergent shallow-water equations was 
defined in Steppeler [IS]. Energy conserving finite-element schemes have not yet 
been tested with two-dimensional flow models. The schemes of [42, 40, and 181 
were tested only by one-dimensional computational examples. 

The present paper investigates the application of the energy conserving scheme 
[IS] with linear elements to the two-dimensional divergent shallow-water primitive 
equations model. 

This scheme can be inplemented with both triangular (Navon [31]) and rec- 
tangular elements. It was argued by Staniforth [33,45] that rectangular elements 
can be implemented much more economically than triangular ones. 

The present paper uses both rectangular elements on a regular grid (for which a 
quasi-regular grid as used in [33] could easily be included), as well as a 
Numerov-Galerkin high-accuracy scheme with regular triangular elements [ 111. 

The effect of using a minimal amount of dissipation both with and without a 
constraint restoration by “a posteriori” augmented-Lagrangian methods [9] for 
energy and potential enstrophy are also investigated using the triangular element 
model defined in [31, 111. The effects of critical dissipativity and finite-time 
“blow-up” in finite-element models is amply discussed. 

While such behavior was until now discussed and studied in finite-difference 
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models of the shallow-water equations (see, for instance, [3] and Fairweather and 
Navon [48]), there was to our knowledge no similar effort concerning finite- 
element schemes. 

The basic finite-element schemes will be described in Section 2 while the 
implementation of the different schemes will be described in Section 3. Section 4 
describes briefly the Numerov-Galerkin finite-element scheme with linear triangular 
elements. Section 5 will give the results of test integrations as well as a discussion 
of the results of the various experiments for long-term integrations using conserving 
and non-conserving finite-element schemes. Finally, conclusions and directions for 
further research will be provided in Section 6. 

2. THE FINITE-ELEMENT SCHEME ON RECTANGULAR ELEMENTS 

For the tests with triangular elements we shall use the Numerov-Galerkin 
technique described in [ 1 l] and documented in [31]. Therefore in the following we 
describe only the model using rectangular elements. 

For a one-dimensional grid XV let e,(X) be the piecewise linear function defined 
by 

e,(X,) = 1 

The representation of a field @(X, Y) in a two-dimensional grid X, Y, is then given 
by 

We define the two-dimensional basis function b,, by 

b,.,(X, Y) = e,,(X) e,( Y). (3) 

The QVP in (2) are the amplitudes of the field @, which are also gridpoint values. 
An energy conserving finite-element scheme is defined in terms of Galerkin 

operators G, which approximate a general field Y, represented in (2) by a function 
of the class defined in (2), 

p=GY, ‘?(X, Y)=x !i+,,,b,,(X, Y). (4) 
“h 

The amplitudes p,,, which determine p in (4), are defined by 

(CC b,,) = (% b,,) = (K b,,). (5) 

Some mathematical properties of the Galerkin operators G are given in the 
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Appendix. In (5), the scalar product (a, b) of two functions a(X, Y) and b(X, Y) is 
defined as 

(a, b) = J dXdY a(X, Y) h(X, Y) w(X, Y). (6) 

In (6), w(X, Y) is a positive weight function. Different choices of w in (6) will define 
different Galerkin approximation operators G,, G2, . . . in (4) and (5). For a more 
detailed definition of G see [18]. 

The primitive shallow-water equations to be approximated are 

ii=fv- UU,- VU,- H, 

6’= -fv- UV,- VP’,- H, (7) 

fi= -(UH),-(VH),. 

In order to define an energy conserving Galerkin scheme for (7), we use the 
Galerkin operator G, corresponding to w = H(X, Y) and the operator G2, delined 
by W= 1 in (4), (5), and (6). 

An energy conserving finite-element scheme for (7) is defined by 

ii= Gl(gV- (G2(f(U2 + V2)+ H)),) 

k=G,(-VU-(G2(;(U2+ V’)+H)),) 

I?= -G,((UH),+(VH),) 

yI= v,-- u,+f: 

(8) 

In (8), G, is the Galerkin operation with weight H, and G2 is the Galerkin 
operation with weight 1. Here v represents the absolute vorticity. 

The proof of energy conservation of scheme (8) is given in [ 183. For comparison, 
we will also use the standard Galerkin finite-element scheme, which is not energy 
conserving: 

ti= G,(jV- UU,- VU,- H,) 

pi= G,( -fv- UV,- VP’,- HY) (9) 

I?= G2( -(HU),- (HV),). 

In (9), G2 is the Galerkin operator with weight 1. Scheme (9) will be referred to as 
the non-conserving finite-element scheme. 

The computational technique for the computation of G will be given in Section 3. 
Here we describe the decomposition of G into one-dimensional operators. In 
analogy to (6), we define 
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(a, h): = j dJf4X Y) b(X, Y) 4x Y) 

(10) 
(a, b); = J dY4X Y) b(X, Y) WG Y), 

where (a, b): is a function of Y, and (a, b),Y is a function of X. From (6) we 
conclude 

(4 b) = ((4 ME, 1,: 

= ((a, b),Y, 1,;“. (11) 

The one-dimensional Galerkin operators Gf and G,Y are defined in analogy to (5) 
by 

(G: Yu(X Y), e,(W);2: = (Yu(X Y), e,(W): 

(G,Y Y(X 0, e,( Y))f = (WC Yh ep( VI,‘. 
(12) 

The two-dimensional Galerkin operator G defined in (5) is decomposed into one- 
dimensional operators by the product 

G = GfG,t: (13) 

or 

G = G,YG;. (14) 

To prove (13), relation (5) has to be demonstrated for GtGz. Using (3), 

(GtG,Y y, &,A - ( y, h,) = (GfG,i K 4-V e,(Y)) - (G,Yy, e,V) ep( Y)) 

+ CG,‘ul, 4-Q e,(Y)) - (y, e,(W ep( Y)). (15) 

Using Eq. (l), we obtain 

(GZGL K b,,) - (y, h,) = ((GtGi Y e,(-U)~, e,(Y)): 

- ((Gi’i K d-V):, e,(Y)): 

+ ((GL ul, e,( Y)),Y, e,(W):’ 

- (((v e,( Y)),Y, e,&U)f. 

Using in Eq. (16), the relations 

(a1 +a23 w;= (al, b);Y+ (a23 b);Y 

(a, +a,, b):= (a,, b)[+ (a,, b):, 

(16) 

(17) 

(18) 
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and applying the definitions in Eq. (12) of Gt and Gi, we conclude 

(GifG~Y,‘,,,,)-(Y,V,,,,,)=O. 

Together with (5) this proves (13). 

(19) 

The decomposition in Eqs. (13) and (14) of the Galerkin operation into one- 
dimensional ones renders the scheme rather economical and allows the application 
of direct linear equation solvers. This is the main advantage of rectangular versus 
triangular elements (See also Staniforth [45]). 

3. THE IMPLEMENTATION OF THE RECTANGULAR FINITE-ELEMENT 
SHALLOW-WATER EQUATION MODEL 

The implementation of the triangular scheme FEUDX is described in [31]. In 
the following we will describe the implementation of the rectangular finite-element 
scheme introduced in Section 2. 

Like the spectral method, the finite-element scheme uses a basis function 
representation for the fields. For the finite-element scheme, the amplitudes @,,U are 
also gridpoint values. They are represented in the main nodepoint grid, shown in 
Fig. 1A. 

3.1. Grids and Integration Formulas 

For the spectral method, an efficient computation of the Galerkin operators is 
possible by using a collocation grid Orszag [44]. The use of a collocation grid with 
finite-elements has been proposed in [45] as an efficient means to implement a 
finite-element scheme, and it was used with a vertical finite-element discretization in 
c-221. 

According to (4), (5), and (6) the implementation of a Galerkin operator requires 
the computation of the Galerkin integrals (Y, b,,) in (5). These two-dimensional 
integrals can be reduced to a sequence of one-dimensional integrals (See Eq. (11)). 

FIG. 1. The grids used for the implementation of the rectangular finite-element scheme, A: main 
nodepoints, B: collocation grid, C: Y-collocation grid. 
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According to Eq. (lo), the one-dimensional Galerkin integral (Y(X, Y), e,(Y)) in 
the Y-direction can be written as 

(Y(X Y), e,,(Y)) = j “+I dY Yu(X Y) e,,(Y) 4X Y) 
Y,-I 

=I” dYY(X, Y)e,(Y)w(X, Y) 
Yp-I 

+.i 

Yp+l 
dY Y(X, Y) e,(Y) w(X, Y). 

Y/l 
(20) 

For each of the two integrals in (20) the integrand is a polynomial. Therefore, the 
integral can be evaluated exactly by Gaussian quadrature (see Davis and 
Rabinowitz [46]). The functions Y, as given in (S), are quadratic functions in Y 
for fixed X, and e, and w have a degree not higher than 1. Therefore the integrand 
can consist of polynomials of degree up to 4. An exact integration in (20) is 
achieved with three Gaussian points: 

s “” dY Y(X, Y) e,(Y) w(X, Y) = i ~5 WC Y,,) e,(Yd) 4X Y,,t). (21) 
YP 5=l 

The Gaussian points Y,,, and weights CQ belonging to the interval (Y,, Y, + ,) are 
given in Abramowitz and Stegun [47]. 

The integrals on the right-hand side of (20) are evaluated for X = X,. The corre- 
sponding grid is called the Y-collocation grid. It is shown in Fig. 1C. Gaussian 
collocation points are also introduced for the X-variable. For each interval X,, 
x ,,+, , we obtain three collocation points XV,P, p = 1, 2, 3. The Y-values belonging 
to these points are Y,,,. The grid X,,, , YP,c is called the collocation grid. It is 
shown in Fig. 1B. 

According to Fig. 1 there are three representations for a function Y(X, Y). 
According to (2), the basic fields U, P’, H in (7) are represented in the main 
nodepoint grid, Fig. 1A. The Galerkin projection GY of any function Y(X, Y) is 
also represented in the main nodepoint grid. The collocation grid, Fig. lC, will be 
used to represent functions Y(X, Y) occurring in the right-hand side of (8). The 
Y-collocation grid, Fig. lB, will be used to represent GZY, with Gz being defined 
in (12). 

The computational technique is quite similar to that used with the spectral 
method [44]. All fields are interpolated to the collocation grid, the equations of 
motion (7) are solved on the collocation grid, and then the Galerkin transformation 
is used to transform back to the main nodepoint grid. 

3.2. Interpolation Formula 

The interpolation of a field Y(X, Y) defined by (2) performed from the main 
nodepoint grid to the collocation grid, is carried out in two steps. The first step 
interpolates Y(X, Y) to the Y-collocation grid, Fig. 1B: 



FINITE-ELEMENT SCHEMES 103 

yColY- y,,, - y, 
Y 

Y iit1 - y,, 
"./1,5 - ",P + ' + y,, + , - y,, 

Y 
Y - y, u,kJ . 

U+l 
(22) 

Y/,,,> CG (13 2, 3) are the Gaussian collocation points for the interval ( Y,, Y,,+ I ), 
introduced in (2 1). The Y-derivatives in the Y-collocation grid are defined as 

(23) 

In an X-interpolation step, Yu$,,5, p, 5 E ( 1, 2, 3) is obtained at the collocation 
points, Fig. lB, where v and p are the main points and p and t are indices of the 
collocation points, 

yccd x,.,, - X” x 
L’, I’. !A. c: 

=x,,+,-x,, 
Y v+l -xv,,, y 

b,+14,5+ x,,+, -x, 

” 
“,,L<’ (24) 

In (24) x,(,, PE {I, 2, 3) are the Gaussian integration points belonging to the 
interval (X,, X,, + , ). 

The X-derivatives Yx of Y(X, Y) at the collocation points are computed by 

yCol = Y v+ 1,p.t - y,,,r 
X". P. r5 X Y + 1 -x,, 

(25) 

The Y-derivatives at the collocation points are computed by (23) and (24) inserting 
Y y for Y (see Fig. 1). 

3.3. Scalar Products and Galerkin Operations 

In this section we consider the problem of transforming a field YV,p,P,5, given in 
the collocation grid to the main nodepoint grid, Fig. lA, by Galerkin projection. We 
have to think of Y,,,P,Lr,t as a rather general function, not necessarily represented as 
a linear spline (2). In our application Y,,,,,,.< will represent a term in the discretized 
equation of motion (8). 

The Galerkin projection of YV,,,,,< will be done according to (14) in two steps. 
First the projection Gz in X-direction will be done. This will lead from the colloca- 
tion grid, Fig. lB, to the Y-collocation grid. To obtain Gt it is according to (10) 
and (12) necessary to obtain the Galerkin integrals. We use (10) and evaluate the 
Galerkin integrals in the X-direction, ( 12) for Y = Y,,, , t E { 1, 2, 3 }, 

yColY= 
X,+1 

V.P.5 s dx y(X Yp,t) e,(X) WC Y). (26) 
X,-l 

Using (20) and (21) rewritten for X, rather than Y, we obtain 

(27) 
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To evaluate (27) it is necessary to know the weight function w at the collocation 
points. For our applications with (8), w will be either H or 1. A scheme of roughly 
the same numerical cost is obtained by using Lobatto integration [47] with four 
integration points rather than the Gauss formula. If this is reduced to the use of 
three points, the integration by Simpson’s rule is obtained, which is particularly 
efficient [45]. Three collocation points per grid interval with Gauss integration or 
four points with Lobatto integration are necessary in order to achieve exact integra- 
tion in the presence of a weighting function w which is a linear spline. For opera- 
tional implementation it will be worth investigating if a reduced integration with 
two collocation points is sufficiently accurate in practice. 

The Galerkin transformation Gt in the X-direction is defined in (12). Gc!P is 
defined by its gridpoint values (GZY),,,,,, in the Y-collocation grid, Fig. lc. 
Equation (12) provides a linear equation for the determination of (Gt Y),,P,r, with 
!P:z,[ providing the right-hand side. To see this, use (12) with the functional 
representation for Gi Y(X, Y): 

Gt y(X, Y) = 1 (Gc Y),, ( Y) e,(X). (28) 

Note that the coefficients (Gt Y), of the basis function e, in the X-direction are a 
function of Y. Inserting (28) into (12) and choosing Y = YP,ir, we obtain the 
Galerkin equation in the X-direction, 

with 

(30) 

The b-term in (30) can be precomputed, if the weight w is fixed. For a weight 
w(X, Y) variable in time, the B-term can be computed by Gaussian integration, in 
a similar way as the Yy”:,F in (27). 

The scalar products ‘in (30) are defined in (lo), and they are evaluated for 
Y= Y,,,. 

Equation (29) can be solved by Gaussian elimination, as described by Ahlberg et 
al. [SO]. Note that the index v, p has the same value for all terms in (29), and 
therefore (29) is only an equation in the index v. The matrix on the left-hand side 
of (29) is a tridiagonal matrix, and the Gaussian elimination procedure will cost 
two multiplications for each gridpoint in the Y-collocation grid. 

The Galerkin projection CL in the Y-direction will transform the field cD,,,~,~ 
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defined in the Y-collocation grid, into a field @,,+ in the main nodepoint grid. @,,,[, 
represents GY = G,cGt !P. 

In order to compute the result of the application of GL on cD,,,~,~, we have as a 
first step to compute the Galerkin integrals of 0. We evaluate the right-hand side 
of ( 12) for X = X,, and define 

-Y 

s 
Yp-I 

@ v, 1’ = dY @(X, Y) e,(Y) M’(X, Y). 
y,, I 

Using Eqs. (20) and (21) for X = X,, we obtain 

Note that in (33) w,,,!,,< is required on the Y-collocation grid, Fig. lc. 
For G,r@(X, Y) we use the representation 

Glly@(X, Y) = 1 (G,Y@), (A’) e,(Y). 

Equations ( 12) and (34) are used for X = A’,, and we define 

@,‘@I, (Xv) = W:@L,. 

Inserting (34) in (12), we obtain the following linear equations for (G,Y@): 

y:m,,,(G,Y@),,,,- I + dJG;@)\~.p + Y:,,W,%.,+ I = G:,. 

The yi,,, i= 1 . . .3, are defined by 

Y A,, = (e, - l, e,CI 

Y 2 - Y. p - (e,,, e,),Y 

Y?,, = (e,, e, + l 1:. 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

If the weight w is variable in time, then y can be determined using the Gaussian 
points according to Eqs. (20) and (21). Since the index v has the same value for all 
terms in (36), it is a linear equation with respect to p only. The Gaussian elimina- 
tion procedure (see [SO]) costs two multiplications for each gridpoint in the main 
nodepoint grid. 

3.4. The Computational Algorithm 

The result of the Galerkin projection in (8) is represented in the main nodepoint 
grid. This will then result in representations for i’, p, fi according to (2) and (3); 
i.e.. 
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WC Y) = c U”,p~,,,lL(x Y) 
1’. I’ 

where the i?, p, and fi are partial derivatives with respect to time. 

(38) 

Defining a quantity 

Eq. (8) can be written as 

l?= G,(qV- G,e) 

v=G,(-VU-G,e) 

~==G,WW+WW,) 

‘1=v,-UysJ: 

(39) 

(40) 

The typical algorithm for a time step in the numerical integration of Eq. (40) will 
be described in the following. At the start ICJ,,,~, V,, and H,,, are given, and the 
result of the computation is U,,,p, P’/v,P, and H,,,,. In the following, the number of 
indices of a given field U, V, or H will indicate the grid, on which the field variable 
is represented. For example, U,,p,p,r will mean the U-field, represented on the 
collocation grid. The following steps are performed in order to compute fiV+, ii,,,lcr 
and p,,,P : 

(1) Gridpoint values for U, V, and H are computed on the Y-collocation 
grid, according to Eq. (22). This step results in coefficients U,,,,, , V,,,, @, and HY,I,,t. 

(2) The Y-derivatives for U, V, and H are computed on the Y-collocation 
grid using Eq. (23). We obtain nodepoint values U, rC, Vyvg5 , and HYv,p,C. 

(3) Using Eq. (24), the fields U, V, H, Uy, ii, and ‘H, are interpolated to 
the collocation grid. This results in coefficients UY,P,P,r, V,,,p,p,5, HY,P,o,5, UY,,p,p,t, 
V y\ p p <’ and Hy”.p.r.i,. 

(4) The X-derivatives of U, V, and H in the collocation grid are computed 
using Eq. (25). This results in nodepoint values Ux ,,,,,, p,t, VX,,p,p,t, and HXzp,p,S. 

(5) According to Eq. (3.9) e is evaluated on the collocation grid, 

e V.P>fl.< = uJLl,S + VLL.5) + H”4,P.r~ (41) 

(6) The scalar products e in the X-direction are evaluated in Equation (27) 
using a weight w = 1. The results are represented on the Y-collocation grid. 
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(7) By Gaussian elimination of Eq. (29) the Galerkin projection in the 
X-direction, G:e is computed. The result is again represented on the Y-collocation 
grid by coefficients e,,,,<. 

(8) The Galerkin integrals of e in the Y-direction are computed using 
Eq. (33) with a weight w = 1. This is represented in the main nodepoint grid by 
coefficients FLY,. 

(9) Gaussian elimination in Eq. (34) is used to compute the Galerkin 
projection in the Y-direction. According to Eq. (14), this represents G,e. The 
coefficients are (G,e),,,,, . 

(10) Steps 1, 2, 3, and 4 are repeated for G,e. The result is representative of 
(G,e) y and (G,e), on the collocation grid. These fields are represented by coef- 
ficients (G2eJy, .,,.,,. i and (G2elx ,,,,, p,t. 

(11) The time derivatives are computed on the collocation grid: 

(42) 

(12) The Galerkin projection steps 6, 7, 8, and 9 are repeated for the fields 
rj and v, resulting in representations on the main nodepoint grid ii,,,, and fio,ic. 
Steps 6 and 7 have to be carried out using the weight w,,,,,,~ = H,,,,,,5 in the 
collocation grid, and steps 8 and 9 have to be carried out using the weight 
w I = Hv,,,,; I’, w c in the Y-collocation grid. The steps 6, 7, 8, and 9 are then repeated 
for H, using the weight w = 1. 

The discretization of Eq. (9) is just a subset of steps l-12. 
Once the time derivatives have been computed, the equation system is advanced 

in time using a leapfrog time differencing scheme. In order to investigate the non- 
linear stability, we introduce a second-order smoothing operator with coefficient E, 
which reduces both spatially small scales and the computational mode of the leap- 
frog scheme, acting as a low-pass filter, 

U;,,,, = U:,, + Ad:,,, 
V:+ = V:,, + At@:,,, 
Hi,,, = H:,,, + Atfit.,, 

u:.,, ’ = U;t,, ’ $2AtiJ,,,l, + V; U 

V n+l 
I’. 1’ = Vf,,‘+2At~,,,,,+VfV 

H :,f ’ = H;,; I + 2Atfi,.,,, + V,z H. 

(43) 

(44) 
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A good indication of the numerical cost of the scheme cannot be obtained with the 
coarse resolution used here. The short vector lengths will result in a rather bad 
performance on vector machines, which will be uncharacteristic for the behavior 
with higher resolution. It may, however, be interesting to compare CPU-times 
for the two schemes Eqs. (8), (9). The code for the energy-conserving scheme was 
by a factor of 1.3 more expensive than that of the non-conserving scheme, when 
using the same number of collocation points. Since the scheme of Eq. (9) can be 
implemented with only two collocation points per grid interval, the non-conserving 
scheme of Eq. (9) will be, by a further factor of 2, more efficient than that of Eq. (8). 
The operational feasibility of the non-conserving scheme is proven, since the FE 
scheme proposed in [33] is more complicated than that of Eq. (9). For operational 
applications it would be interesting to investigate whether a reduced integration 
using only two collocation points per interval provides a reasonable approximation 
for the scheme of Eq. (8). 

The smoothing operator V2 is defined as 

where V2 is the discrete Laplacian operator with the difference that the central star 
grid point is using the previous time level (n - 1). Here E is a coefficient controlling 
the amount of smoothing. In addition to the filter operation defined in (45) we will 
also use the Robert filter, as defined by Asselin [58] 

~;=~,“+&,(~“+‘--~~+~;~I), (46) 

with @” representing any field, @; being the field after filtering, and sT being the 
filter coefficient. The operation defined in Eq. (46) will remove the computational 
mode of the leapfrog scheme and leave the physical mode untouched. 

4. THE NUMEROV-GALERKIN FINITE-ELEMENT METHOD 
WITH TRIANGULAR ELEMENTS 

In order to test the conservation of total energy as well as potential enstrophy m 
finite-element method solutions of the non-linear divergent shallow-water equations 
a two-stage Numerov-Galerkin method described in [ll, 313 was also applied 
using the same initial conditions and similar resolution as the rectangular Galerkin 
finite-element scheme. The two-stage Numerov-Galerkin technique seeks to obtain 
high accuracy for the estimation of the non-linear advective term by combining the 
two-stage Galerkin product advocated by Cullen and Morton [52] with a high- 
order approximation to the first derivative in the advective term. 

In this approach we first calculate the Galerkin approximation to aI’/aJ.’ in the 
advection term, which we call Z as 

~Zj-1+3Zj+bZj~*=~h~‘(V,+,-Vj~,), 

where h is the diameter of the element. 

(47) 
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Then we calculate the product w = u(a V/ax) as 

iwi+ 1 + $Wi + ;Wj- ~=~(“j~,z,-,+Ui-,Z,+Uizj~,+UjZj,, 

+ u,+, zj+“j+,Z,+I)+$UjZ,. 

The two-stage Galerkin approach results in a lower asymptotic truncation error 
[52, 313. 

In the NumerovvGalerkin method we use a generalized spline to obtain a 
high-order compact implicit difference approximation of order O(h’) for the first- 
derivative (see Swartz and Wendroff [53, 3 1, and 111. 

As the two-stage Numerov-Galerkin method is not conserving integral invariants 
such as total energy and potential enstrophy, a non-linear constrained optimization 
approach based on the augmented Lagrangian method (see Navon [54]) was used 
to enforce “a posterior? conservation of these integral invariants. However, good 
conservations also obtained without this variational method and most of the 
experiments conducted in this research did not use variational “a posterior? enforcing 
of conservation. 

Also a Shuman [SS] low-pass filter designed to filter out short wavelength com- 
ponents at the Nyquist cut-off limit was applied periodically every 6 or 12 h to the 
meridional V component of the velocity. The smoothing is applied sequentially in 
the X and Y directions. 

Linear triangular elements are used in this method combined with a time- 
extrapolated CrankkNicolson time-differencing scheme for integrating in time the 
system of ordinary differential equations resulting from the application of the 
NumerovvGalerkin scheme. The resulting system of equations is solved using an 
iterative method. 

5. TEST INTEGRATIONS 

5.1. Test Integrations for the Rectangular Elements Scheme 

Test integrations were carried out with rectangular and triangular linear elements 
using the models described in Sections 2.3 and 4. The non-conserving version of the 
rectangular scheme is compared to the version conserving energy by an intrinsic 
method. 

The triangular finite-element model uses the program FEUDXl [31]. The non- 
conserving version [31] of this scheme using only a Schuman low-pass filter is 
compared to a version [48] which conserves energy and potential enstrophy by 
restoring these integral constraints after time steps where a conservation threshold 
is violated. The method uses an augmented Lagrangian non-linearly constrained 
optimization technique. 

We then investigate critical times for “blow-up” as well as the minimal critical 
dissipativity required in order to obtain stable long-term integrations of the 
shallow-water equations model. 
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For numerical schemes to be used for climate simulation or medium-range 
forecasts, it is considered of primary importance that the finite-time “blow-up” 
occurs rather late in the forecast and that as little energy loss as possible is incurred 
when non-linear instability is prevented by using a diffusion term. 

Test integrations with the rectangular finite-element scheme were carried out on 
an 8 x 8 point main nodepoint grid with 

4.11 
AX= - 

7 
lO*m 

f= 10-4s- ’ 

At = 900 s. 

The initial values were chosen similar to Grammeltvedt [49], 

h(X, Y) = H, + H, tanh 9(Y- m+H 2. 

with 

H,=20000m2s~2 

H, = 4400m2 s-2 

H, = 2660m2 s 2 

L=D=4400km 

4000 km 
AX=- 

7 

f= 10-4 s--I. 

(49) 

(50) 

The amplitude of the perturbation of the zonal flow in Eq. (50) was chosen to be 
larger by a factor of 2 than in [49], in order to make the stability test more 
difhcult. Using these initial conditions, test integrations with no diffusion (E = 0) 
were carried out. 

The non-conserving rectangular finite-element scheme, Eq. (9) became unstable 
after 25 days, whereas the conserving scheme Eq. (8) became unstable after 35 days. 
Figure 2 shows the total energy (continuous line) for the first 23 days of integration 

E=$WYH(C’+ V2+H) (51) 

as a function of the time step for the non-conserving scheme Eq. (9). The integral 
in Eq. (51) is evaluated exactly using Eq. (8) or the corresponding interpolation 
assumption for triangular elements. 
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FIG. 2. Energy as function of the time (days) for the non-conserving rectangular finite-element 
scheme with E (dissipation coeffkient)=O. E(0) is the initial energy (continuous line) and for the 
conserving rectangular finite-element scheme (dashed line). 

The corresponding diagram for the conserving scheme is shown in Fig. 2 (dashed 
line). 

In the non-conserving case, the energy grows until non-linear instability occurs, 
whereas for the conserving scheme the energy is more constant and non-linear 
instability occurs much later. 

Potential enstrophy, 

Z= dXdYH@= 
I (52) 

with 

@= v,- u,+ j 
H ’ 

is not conserved for the rectangular finite-element case. Its time development is 
shown in Fig. 3 for the non-conserving scheme (continuous line), and by the dashed 
line in Fig. 3 for the energy conserving scheme. The energy conserving scheme also 
conserves potential enstrophy better, particularly at the end of the forecast time. 
The onset of instability is preceded by considerable increases and decreases of 
potential enstrophy. 

A diffusion term (E # 0) as in Eq. (45) will make the time dependence of the 
energy monotonic and prevent non-linear instability, if E is sufficiently large. There 
is a critical minimum value of E to achieve this. E values below this value have a 
small effect on the stability behavior of the scheme. This critical value of E was 
found to be E = & for the non-conserving scheme and E = & for the conserving 
scheme. Integrations were performed for both schemes up to day 150 (see also [3]). 
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FIG. 3. Potential enstrophy as a function of the time (days) for the non-conserving rectangular 
finite-element scheme (continuous line), At aECT = 900 s, and for the energy conserving scheme (dashed 
line). 

The time dependence of the total energy is shown in Fig. 4 for the non-conserving 
scheme (by the continuous line) and by a dashed line for the energy conserving 
scheme. 

Both schemes suffer from a decrease of energy due to the dissipativity. A com- 
parison of the two curves in Fig. 4 shows that there is a smaller loss of energy for 
the conserving rectangular finite-element scheme. To put the amount of energy loss 
into perspective it may be remarked that the non-conserving scheme according to 
Fig. 4 loses as much energy in the first 10 days of the forecast as the initial amount 
of the kinetic energy. 

Figure 5 (continuous and half tone lines) shows the time diagrams for the poten- 
tial enstrophy for long-term integrations using the non-conserving and conserving 
schemes, respectively. 

A somewhat better conservation of the energy and enstrophy integral invariants 
by the energy conserving scheme can be observed. 

The filter operator defined in Eq. (45) results in a spatial smoothing and a 
damping of the computational mode of the leapfrog scheme. Ct will, however, not 
damp the computational mode of the 2dX wave, which changes sign both at alter- 
nate grid points and time levels. Three-dimensional atmospheric models normally 
contain a Robert filter as defined in Eq. (46) to damp the computational mode and, 
in addition, a spatial filter operation. In order to investigate the sensitivity of the 
result to the choice of the filter, tests using alternative smoothing schemes were 
done. Also, the use of a spatial filter alone is unsuitable with the leapfrog time 
integration scheme, when not using the Robert filter as given in Eq. (46). The 
application of a Shuman filter term [SS] could not control the computational 
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TIME (DAYS) 

FIG. 4. Time dependence of total energy of the non-conserving scheme using a critical dissipativity 
coeffkient E = & (continuous line) and E = & (dashed line). 
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FIG. 5. Potential enstrophy as a function of time using the non-conserving rectangular finite-element 
scheme in a long-term integration (150 days) with critical dissipativity coefficient of E = & (continuous 
line) and E = & (dashed line). 
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TABLE I 

Energy Normalized by the Energy at the 
Initial Time of the Conserving Model 

after N = 2500 and N = 15000 Time Steps 
for Different Values of Ed 

N 2500 15000 

Ej- = 0.05 0.995 0.990 
E, =O.l 0.995 0.990 

mode, which attained a strong amplitude in long integrations, and a considerable 
loss of energy occurred. 

The application of a time filter according to Eq. (46) would stabilize the integra- 
tion for the energy conserving scheme without applying any spatial smoothing. The 
critical value of sT to obtain stability is cT = 0.5. A further decrease of Ed to sT = 0.1 
did not increase the energy dissipation after 2500 and 15,000 timesteps. A com- 
parison with Fig. 4 shows that the energy loss is somewhat smaller than with the 
smoothing scheme given by Eq. (45). 

The non-conserving model could not be stabilized with the application of the 
Robert filter alone, and values of E, = 0.1 or sT = 0.2. However, the instability was 
postponed until after timestep N= 5000. The application of a Shuman filter every 
100 timesteps was able to eliminate the instability. Energy values are given in 
Table II. A comparison with Table I shows that the dissipation is stronger than for 
the conserving scheme. 

The experiments indicate that the conserving scheme can be stabilized with less 
dissipation of energy than the non-conserving scheme. 

5.2. Results of Test Integrations for the Triangular Elements Scheme 

The computations with the triangular elements scheme, using the program 
FEUDXl [31] were carried out on a 12 x 15 grid, using AX= 400 km and a time 
step of At = 1800 s and initial values as in [49]. 

The critical “blow-up” time was about 12 days when no dissipation and no “a 

TABLE II 

Energy Normalized by the Initial 
Energy of the Non-conserving 

Scheme after N = 2500 and 
N = 15000 Time Steps Using 
Robert and Shuman Filters 

N 2500 15000 

E 0.987 0.982 
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FIG. 6. Energy as a function of time (in days) normalized by the initial energy using the 
Numerov-Galerkin finite-element scheme with triangular elements with &human filter diffusion every 
48 h (96 time steps) and constrained restoration (continuous line) and without Shuman filter diffusion 
(dashed line). The later blowups after about 11 model days. 

posterior? enforcement of conservation were used (see also Fairweather and Navon 
t-481). 

This did not change in a significant way when only the constraint restoration 
method [48] was used with no dissipation. 

When a slight amount of dissipation (one application of Shuman filter every 96 
time steps) was used, both energy and potential enstrophy were conserved very well 
beyond the time of the “blow-up” as shown in Figs. 6 and 7 (continuous lines). 

For comparison, Figs. 6 and 7 (dashed lines) give the same diagrams for the 
non-conserving version of the triangular finite-element model FEUDXl [31]. 
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FIG. 7. Same as Fig. 6, but for potential enstrophy. Continuous line stands for the run with 
Schuman filter applied every 48 h and dashed line stands for the run without Schuman filter. The later 
run blowups after about 11 model days. 
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TIME (DAYS) 

FIG. 8. As Fig. 6, but for a long run of 50 days with both Schuman filter type diffusion every 24 time 
steps and variational constraint restoration (continuous line), with Shuman filter applied every 96 time 
steps and no constraint restoration (dashed line) and with Shuman filter applied every 48 time steps 
(24 h) and no constraint restoration (dot and dash line). dt,, = 1800 s. 

A moderate Shuman [55] filter term is sufficient in the Numerov-Galerkin 
triangular element scheme to achieve long-term stability, manifested by quasi- 
perfect conservation of total energy and enstrophy integral invariants and by a 
good evolution of the height fields. 

Application of the Shuman filter [31], Shuman [55, 191 every 96 steps (48 h) is 
sufficient to achieve stability. 

While variational constraint restoration alone does not prevent finite-time “blow- 
up,” a small amount of dissipation in combination with the variational constraint 
restoration method [48] achieves very good restoration of constraints as shown in 
Figs. 8 and 9 (continuous lines). 

90 ' I I I I I 
0 10 20 30 40 50 
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FIG. 9. As Fig. 8, but for potential enstrophy. 
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The conservation, as apparent in these figures, is much better than the one 
achieved by the intrinsic energy conserving model. 

A number of tests were carried out to find the minimal amount of dissipativity 
required for the triangular element scheme (see Sadourny [3]). A 50-day run was 
conducted without constraint restoration applying the Shuman filter to the 
V-meridional component of the wind velocity every 96 time steps, i.e., every 48 h. 
A slight decrease in potential enstrophy was observed, while the energy was almost 
perfectly conserved (Figs. 8 and 9, dashed lines). 

Another 50-day run was conducted differing from the first only in that the 
Shuman filter was applied every 48 time steps, i.e., a larger dissipativity factor is 
implied. 

The results illustrated in Figs. 8 and 9 (dot and dash lines) show a slightly larger 
decrease in the potential enstrophy invariant (to the level of 98% of its initial value) 
while the total energy was again perfectly conserved. 

However, the threshold of critical dissipativity is reached when one applies the 
Shuman filter only once every 192 time steps, i.e., every 96 h Then a finite-time 
“blow-up” occurs after 700 time steps (350 h), i.e., between 14 and 15 days of 
integration as illustrated in Figs. 10 and 11 (continuous lines). 

To assess the impact of the variational constraint restoration, we conducted a 
model run using variational constraint restoration whenever the normalized poten- 
tial enstrophy Z/Z,, varied by more than lop3 or the normalized total energy 
invariant E/E, varied by more than 10P3, where E, and Z, denote the initial values 
of the total energy and potential enstrophy, respectively. We first applied the 
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FIG. 10. Energy as a function of time (in days) normalized by the initial energy for the 
Numerov-Galerkin finite-element scheme with linear triangular elements with Shuman diffusion every 
192 time steps and without variational constraint restoration. Finite-time “blow-up” after 700 time steps 
or about 15 days (continuous line), with variational constraint restoration and Shuman filter applied 
every 48 time steps (dashed line) and with Shuman filter applied every 96 time steps and with variational 
constraint restoration (dot and dash line). The later blows-up after 35 model days. 
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FIG. 11. Same as Fig. 10, but for potential enstrophy. 

Shuman filter every 48 time steps (i.e., every 24 h) and a very good conservation 
was obtained for a 50-day run, as evidenced in Figs. 10 and 11 (dashed lines). 

When we applied the Shuman filter (with the variational constraint restoration) 
every 96 time steps a finite-time “blow-up” occurred after 1750 time steps of 1800 s 
each, i.e., after about 35 days (see Figs. 10 and 11, dot and dash lines). This is 
evidence that the critical dissipativity required to stabilize the solution for beyond 
the critical “blow-up” time TC is higher for the run where apart from dissipativity, 
we apply the variational constraint restoration. 

The benefit of the variational constraint restoration method is therefore limited 
only to occurrences when it is applied with a moderate dissipativity. As has been 
recently observed (Navon [56], Takacs [57]), the constraint restoration approach, 
due to its being global, cannot control the wave-wave interactions and will allow 
unphysical energy or potential enstrophy cascades within the resolved spectrum, 
unless additional constraints on mean-wave number conservation are applied. 

5.3. Accuracy Tests of‘ the Rectangular and Triangular Finite-Element Schemes 

In order to provide a basis of comparison between the triangular element 
Numerov-Galerkin scheme and the rectangular element scheme, a very line mesh 
(150 x 11 l), (i.e., 40 km. mesh-size) run of the Gustafsson [60] non-linear AD1 
method using finite-differences and a time step of 360 s was taken to give the 
definitive result. The line mesh results are denoted by WEx, where 

w= (24, u, fj5)‘. (53) 
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Representing the triangular Numerov-Galerkin finite-element method by IV,, and 
the rectangular finite-element scheme by WRECT, respectively (or W,, generically), 
the error for each of the schemes as in Gustafsson [60] is given by 

G,, = WFE - WE,, (54) 

while the relative error is defined to be 

relative error = !!&A- 
II WE, II ’ 

(55) 

where the norm 11 is defined as follows (see Gustafsson [60], Fairweather and 
Navon [48]): 

Define a Hilbert space A? by considering all vector functions of the form 

w= (4 0, 4)’ (56) 

with 

w/h = W,.N,fk, ',,O = vj, N,. = 0 (57) 

(i.e., satisfying the boundary conditions). 
The inner product of two vector-functions of the form (56))(57) is defined by 

and the norm 11. II by 

Ikl12 = (4 ax). (59) 

The relative errors for both the triangular and the quadratic f.e.m. schemes after 
12 h of numerical integration are displayed in Table III. 

The triangular Numerov-Galerkin scheme yields more accurate results but due 
to the fact that it was run at a higher resolution than the rectangular finite element 
scheme, this result is not conclusive. 

TABLE III 

Accuracy Results for the Rectangular and Triangular 
Numerov-Galerkin Finite-Element Schemes 

Rectangular Triangular NumerovpGalerkin 

0.5x 1om4 0.21 x IO ‘I 
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TABLE IV 

Computational Efficiency of the Two Finite-Element Models in Terms of 
Respective Run-Times per Full Time Step per Grid Point 

Computer 
Triangular model Rectangular element 

(conservative) model (conservative) 

CYBER 205 

CRAY-XMP-48 

9.1 x 1om4 s 
(16 x 12 grid) 
4.5 x 1om4 s 

(16 x 12 grid) 

8.9x 10-4s 
(8 x 8 grid) 
2.5 x 10m4 s 
(8 x 8 grid) 

5.4. Computational Efficiency 

The quadratic f.e.m. schemes and triangular N-G schemes were compared for 
computational efficiency by finding the run times in seconds per full time step per 
grid point. The results are displayed both for a run on a CDC CYBER 205 at 
Florida State University using automatic vectorization (VAST-2) and FORTRAN 
compilation under OPT, as well as on a CRAY-XMP-48 at the European Centre 
for Medium Range Weather Forecasts. The results are given for the conservative 
versions of both the triangular finite-element scheme as well as for the conservative 
rectangular model (see Table IV). 

Were the runs to be conducted on a higher resolution grid, the computational 
advantage of the rectangular element model would have become more evident on 
the CYBER 205. The reason for the difference in the results on the two super- 
computers, i.e., the CYBER 205 and the CRAY-XMP-48, respectively, lies in the 
different startup times for short vectors. The crossover between the two vector 
supercomputers occurs at a vector length of about 300. 

6. CONCLUSIONS 

Shallow-water equation models using energy conserving and non-conserving 
finite-element schemes were integrated for extended periods of time with a view to 
investigate their usefulness for climate models for medium-range forecasting. 

While conservation of integral invariants of the shallow-water equations has been 
investigated for long-term integrations using finite-difference discretization schemes, 
this research addresses for the first time the issue of the behavior of finite-element 
schemes when used for long-term integrations of the shallow-water equations. The 
rectangular finite-element non-conserving scheme already displays a good non- 
linear stability for long-term integrations. 

The energy conserving scheme increased this further, allowing the reduction of 
the critical dissipativity parameter necessary to maintain stability in long-term 
integrations, by a factor of 2.5. 
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APPENDIX A: MATHEMATICAL PROPERTIES OF THE GALERKIN OPERATORS G, 
AND G2 

Galerkin operators approximate a general field $(X, Y) belonging to the Hilbert 
space of square integrable functions by a field $(X, Y) from a finite-dimensional 
subspace Ho of H. The subspaces considered here consist of the d defined by 
Eq. (2). 

The defining equation of a Galerkin operator G is (5). If we consider the fields 
U, I’, H used in Eq. (7) two Galerkin operators G, and G2 will be used, whose 
definition differs in the choice of the weight function w in Eq. (6). Their definition 
is 

(G, $3 b,,,), = ($2 &,)I (AlI 

with 

($9 b,,,), = j ti(X Y) b,,(X Y) H(X Y) lady 

and 

with 

(II/, b,,), = j $(X Y) b,,,(X Y) Lf Lw. t-42) 

From these definitions it follows immediately that the Galerkin operators G have 
the properties of a projection operator in Hilbert space: 

G2=G. (A3) 

(Ga, h) = (a, Gh); G(ll,a + L2b) = 2, Ga + E,,Gb, with 2, and & being real numbers 
and a, b, H, and G standing for either G, or G,. The operator GZ, as defined in 
Eq. (A2) is the standard Galerkin operator as given by Strang and Fix [59]. The 
use of weights different from one in the definition (Al) of G, , is equivalent to scalar 
products with multiplying functions b,,(X, Y) H(X, Y). These are different from the 
basis functions b,,(X, Y). The operator G, is therefore a Petrov-Galerkin operator. 

The proof of energy conservation [ 181 for the scheme given by Eq. (8) is based 
on the properties of G given by Eq. (A3). 
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